Recent Improvements to the ATLAS Architecture

Christophe Laprun, Jonathan Fiscus,

John Garofolo, Sylvain Pajot

National Institute of Standards and Technology
100 Bureau Drive Mail Stop 8940
Gaithersburg, MD 20899-8940
(+1) 301 975 3191

{claprun, jfiscus, jgarofolo, pajot}@nist.gov

ABSTRACT

We examine the recent improvements that were made to
the ATLAS (Architedure and Toolsfor Linguistic Analysis
Systems) architedure. We first introduce the achitecture
and the historica context for this work. Next, we describe
NIST’s initia implementation of the framework before
anayzing it. We then focus on three important
improvements (relating to multi-dimensional signals,
hierarchicd structures and validation) we have made to the
architedure to make it more usable. We nclude by
summarizing the major points covered and discuss plans for
future work.

Keywords
ATLAS, MAIA, Linguistic infrastructure
1. INTRODUCTION

Annotated corpora ae a cetral component of reseach in
human language technology. As corpora have proliferated
aaosslanguages, disciplines, and technologies, the lack of
common exchange and storage formats has bewmme a
criticd problem. This profusion of formats has made
reusing annotated data or adapting existing tods for new
annotation tasks sgnificantly more difficult.

The standardization d tag sets (an approach we tried with
our Universal Transcription Format [5]) is of moderate
usefulness $nce language reseach is by necessity an open-
ended task, subjed to constant revision as the reseach
domains change and the theories evolve.

A solution to this "bazaa of tods and formats' [2] is to
interpose ageneric annotation model via which annotation
data is manipulated. ATLAS (Architedure and Tools for
Linguistic Analysis Systems) makes use of such a generic
data model. We first examine the historicd context that led
to the aedion d the projed. We then briefly describe the
first implementation of the achitedure, singling out three
aspeds of the achitecture that neealed to be improved:
handling of complex signals and hierarchicd structures and
validation. Each of these aspects is then discussed in detail
in subsequent sedions. We conclude by summing up the
major points we mvered and suggest future work.

2. HISTORICAL CONTEXT

The ATLAS projed started as a mllaboration between the
LDC, MITRE and NIST in 1999 following Bird and
Liberman' s smina work on Annotation Graphs (AGs] 1]
that demonstrated commonality acoss a diverse range of
annotation pradices and defined a formalism based on
labeled, direaed acyclic graphs.

The three parties remgnized the urgent need for a
consistent way to represent and process annotation data.
NIST needed such a framework to acoommodate mnstantly
evolving reals in linguistic evaluation. The LDC was
developing the AG formalism in oder to develop an
infrastructure that would help reduce the st of linguistic
annotation while MITRE was interested in extending their
Alembic Workbench annotation too to suppat new
domains.

NIST recognized the importance of the LDC's work on
AGs and dedded to form a working group to explore the
credion of a generic annotation framework and toolset that
would address three important issues for the linguistic
reseach community. First, ATLAS would promote
language wrpora reuse and exchange. By providing a
generic annotation framework, ATLAS would make it
easier to share data since data awnotated with a generic
representation could be reused in new contexts. Seoond,

reusable todls could be written in terms of the generic data
model thus easing tod development. Finaly, given its
genericity, ATLAS woud be &le to gracdully
acommodate thanging domains and annotation schemes.

As the result of this collaboration, ATLAS Level 0 (based
on AGs) and the basis for a generalized version (ATLAS
Level 1) were formaly introduced at the second
international conference on Language Resources and
Evauation (LREC 2000 in Athens, Greece ad were the
subjed of [2].

After LREC, the LDC moved on to implement an
architedure based on Annotation Graphs (also cdled AGs
or ATLAS level O, [4]). NIST dedded to pursue the
development of the generdized version of ATLAS
encompassing signals of arbitrary dimensions. A first
implementation of the generdlized framework
(subsequently referred to as 'ATLAS) was made available
in April 2001 Based on fealbad gathered on this first
implementation, a redesigned implementation was released,
in Beta form, at the end of January 2002 followed by
regular updatesin the foll owing months.

3. BASIC CONCEPTS

At the time of its introduction, only the premises for the
generic framework were defined. The LDC had developed
a prototype C++ implementation for ATLAS level 0. But,
the implementation of the generic model had just begun.
The remainder of this paper will address only NIST's
implementation of the generalized version of ATLAS. We
will discuss later how some of these components have
evolved.

ATLAS provides an architedure targeted at fadlit ating the
development of linguistic annatation applicaions'. When it
was first introduced, the architedure was comprised of
three main components that are still present in the newer
implementation:

1. ageneric linguistic annotation antology,

2. an Applicaion Programming Interface(AP!),

3. the ATLAS Interchange Format (AIF, [7]).

The ontology at its core provides the cnstructs on which
the rest of the framework is built. The paradigm is smple
but is surprisingly powerful when it comes to expressng
complex annotation schemes. This provides a level of
indiredion separating physicd storage and application
logic that did not exist when most tools were written to
diredly read and write data using a spedfic format. Tools
developed in terms of the ATLAS ontology can therefore
work with any data nforming to ATLAS paradigm,
which is summarized as follows:

! Atlas was (in the Greek mythology) the Titan condemned to bear
heavens upon his shoulders. ATLAS is supposed to bear the
complexity of annotation management for the benefit of
linguistic applications!

An annotation is the fundamental act of
associating some content to a region in a
signal.

Paralleling this ontology, an ATLAS Annotation
references a Region in a Signal and associates it with a
Content element. The preceding notation defines a
convention that we follow in this paper: ATLAS concepts
are formatted using this font and style. Annotations are
organized in Analysis elements, which are themselves
contained in Corpus €elements. Corpus aso manages
Regions and Anchors. Children elements will be discussed
later. Figure 1, below, presents a pictorial view of the
conceptual model.

Annotation

‘.

=5 7] (8
= [a Q =X

= ol IS
5, o 3 C
n] [}

Analysis

|
\J [/

Figure1: ATLAS Conceptual M odel

|

These mnstructs can be implemented using a variety of
programming languages. The ATLAS API defines ways to
manipulate these @nstructs while the ATLAS Interchange
Format provides a way to serialize ATLAS structures ©
that they can be reused and exchanged.

4. INITIAL IMPLEMENTATION

NIST’s first implementation d the ATLAS architedure
was made avalable in April 2001 This first
implementation provided us with a starting point allowing
us to gather feedbadk and from which we could mature the
framework.

NIST’s implementation (cadled JATLAS) provides a Java
instantiation of these @nstructs in the form of objeds that
can be used to quickly develop linguistic goplicaions.

Eadh of these objeds publishes operations via which its
data can be manipulated and behavior controlled. The
ensemble of these operations defines the ATLAS API.
Developers can thus acces the @mponents of the
framework via a well-established interface permitting
dternate implementations to be developed without
impading client applications.

JATLAS can seridlize the objed structures it manipulates
so that these structures can be eaily shared and reused. The
first implementation provided a singe moddity for
seridizaion: the ATLAS Interchange Format. AlF is an
XML-based file format optimized for the serializaion of
ATLAS structures. XML was chosen as the (then emergent
but now well established) standard data interchange format.

JATLAS first implementation provided NIST with a proof
of concept as well as a full-scde model for
experimentation. This implementation permitted us to
cregde some initial tools that gave us a deeer
understanding of the isaues involved in the credion of a
generic annotation infrastructure. The development of the
framework was not, by its very nature, driven by a
particular applicaion, making it rather complex to make
the right design choices and understanding their
consequences before adually putting the achitecture to
use.

Both implementation and usage made us redize that the
framework exhibited limitations of two kinds: extrinsic and
intrinsic. Extrinsic limitations are problems that appea as
part of the development process Intrinsic limitations are
problems that derive from the data model itself.

4.1 Extrinsiclimitations

Extrinsic limitations revealed themselves as our
development work progressed. Even though we redized at
the time that some problems existed, we wanted to push
ahea to explore the issues more deeply and creae an
architedure with which we could experiment.

The first limitation that we identified was related to
compatibility with Annotation Graphs. ATLAS started as a
conceptual framework based on the Annotation Graph
formalism. Consequently, ATLAS' first instantiation was
dill very much influenced by the Annotation Graph
formalism. Lots of effort had been made, during aur
collaboration with the LDC and MITRE, to ensure that the
data model would be & isomorphic to AGs as possble. In
particular, the expressiveness of the data model was
restricted in order to resped the nstraints impaosed by the
AG formalism. But, over time, it became dea to NIST that
in order to fully generalize the data model, some of these
congtraints needed to be relaxed. In particular, we dedded
that strict conformance to the AG model was not required
provided that ATLAS could express everything that could
be expressed with AGs without lossof information.

The second extrinsic limit that we identified was that the
data model was too strongly tied to the serializaion format.
The reason for this was that our ealy design work focused
on the exchange format rather than the data model. The
work on AlF was, in effed, driving the development of the
data model, because, even though this was not a conscious
effort, the AIF DTD was more or lessused as the ATLAS
data model. This restricted the expressve power of the
framework to XML’s.

These issues led us to re-examine the data model from a
fresh perspedive. We re-designed it starting with the core
ontology and only adding new constructs as deemed
necessary. The seridization format became then an
outgrowth of the stabili zed data model.

4.2 Intrinsiclimitations

Extrinsic limitations aside, several limitations also existed
with the data model itself. These were, however, more
difficult to identify and appeaed only after we put the
architecture to work in buil ding appli cations.

The first limitation that we will examine was the need to
develop the suppart of complex signal types.

The next limitation, we will then turn our attention to, was
the aeaion of hierarchicd annotation structures. Although
ATLAS first data mode alowed the aedion of
hierarchicd annotations, it was not as intuitive & it could
have been.

The last limitation was the management of semantic
information. We initially considered deferring semantic
validation to the XML layer. However, this proved to be
insufficient and we dedded to introduce ameta-annotation
concept, implemented in ATLAS by the Meta-Annotation
Infrastructure for ATLAS (MAIA), to efficiently address
semantic issues.

We discussead of these points in turn in the next sections
and present the solutions that were implemented in the
redesign version of ATLAS.

5. MULTI-DIMENSIONAL SIGNALS

Traditionally, linguistic resources have focused on a linea
classof signals (e.g., text or audio) that can be indexed via
a smple offset into a filee However, as technicd
cgpabiliti es and processng power have increased, so has
interest in multi-modality and signals that cannot be
reduced to asingle dimension.

From the beginning, NIST and the ATLAS Working Group
recognized the need for a framework that would be ale to
evolve gracdully as reseach interests moved toward more
complex, multi-modal signal types. Initially, we believed
that the AG formalism could be employed for al signa
types. However, as we began working with AGs, it became
apparent that although they were well-suited to linea
signals, they did not scde well for more complex signa
types. The basic premise of multi-dimensional signal
handling was included in the first ATLAS implementation.
However, many details were yet to be worked out

5.1 Signalsand SignalGroups

Annotation sources are represented in ATLAS by the
Signal construct. An ATLAS Signal is an immutable, N-
dimensional space ontaining phenomenathat are the target
of Annotations. Even though typicd Signals can be
equated to physicd signa files (speedr waveforms,
newswire text, video or other more wmmplex data with

higher dimensionality), it is not a necessity. In ATLAS, a
Signal is an entity that identifies alogical (as opposed to a
physical file) target for Annotations and can thus refer, for
example, only to the left track of a stereo recording.
ATLAS aso does not prescribe to any single format or
dimensionality for physical signals, but there must be a way
to define an unambiguous coordinate system for the Signal.

Furthermore, groups of related Signals can be formed to
create targets for Annotations spanning severa logical
signals. The SignalGroup construct is used to model this
grouping. SignalGroups constitute new logicd signals
themselves and are treded as such by the framework.
However, some @nstraints need to be imposed to make
them manageéeble. In particular, since ATLAS Signals nedd
to be immutable, once a SignalGroup is creded and
referenced, it cannot be changed. Moreover, in order to
ensure nsistency, only Signals that share @mmon
dimensions can be grouped together. An obvious use of
SignalGroup is the dignment of different signals along a
giventimeline. Anexample of an index into a stereo audio
signal isasimple example.

5.2 Regionsand Anchors

Once Signals have been identified, linguistic phenomena of
interest are identified via Region constructs. A Region is an
abstradion for identifying an area of the Signal space
Regions are delimited by a set of coordinates that mark
spedfic aeas of interest. These markers are modeled by the
Anchor construct, thus named becaise they are used to
“anchor” annotations to Signals.

Anchors are the only ties that annotations have to the
physicd structure of the signal and the only ATLAS
concept that is sgna-spedfic. Regions use & many
Anchors as neaded to index into Signals. Thus, the Region
construct encapsulates the spedficity of the underlying
signa. This is a particularly important asped of ATLAS
since it alows the framework to evolve and scde
gracdully, when confronted with new classes of signals,
without requiring change to the basic ontology. It is aso
worth noting that Regions can reference other Regions as
well.

Suppacse, for example, that a given television signa has
been modeled in ATLAS using three Signals. one for eath
of the two audio tradks and one for the video signal. One
might want to annotate a phenomenon occurring only on
the audio part of the television signal. If the phenomenon of
interest spans both audio channels, one wuld crege a
SignalGroup grouping them together. Since the video
frames can be projeded aong the time dimension, a
grouping of the three Signals can be made to annotate time-
based phenomena for the entire television signal. However,
if the annotation task is to tradk hand movements, the
Regions of interest could be defined using both a temporal
Anchor to mark the frames of interest and another Region
to define the aeaof interest within eat video frame. The

complete Region of interest would then be the compasition
of the temporal Anchors and 2D Regions. Figure 2, below,
presents a graphicd view of this example.

2D Regions

Interval region

Al | eft channel

Al Right channel

SignalGroup

Figure 2: Video Annotation Example

6. HIERARCHICAL STRUCTURES

Suppat for the representation of inter-annotation relations
(in particular, annotation Hherarchies) was mewhat
limited in the first jJATLAS implementation that
constrained such relationships to be represented as part of
an Annotation's Content in a way that was neither
intuitive nor explicit.

As a result of the experience we gained with this
implementation, we introduced the Children construct to
model relations between Annotations. Children constructs
maintain a list of references to Annotations that are
descendants of a parent Annotation. Since references
(rather than adua annotations) are used, it is possible to
build overlapping herarchies. Reuse is therefore improved
since drealy creaed Annotations can be reused in new
contexts.

Parent Annotations can also use their Children elementsto
derive their Content and/or Region. It is therefore possble
to dynamicdly update Content and/or Region information
of a parent based on changes to its st of Children, thus
avoiding redundancy and simplifying annotation
management.

The TIMIT Acoustic Phonetic Corpus ([3]) provides a
simple example of parent/child annotation relationships. In
TIMIT, words are composed of a set of phones. This
relationship is modeled quite simply in ATLAS by creaing
a Children element of a word Annotation that contains a
list of references to the phone Annotations for that word.
Further, this makes it possble for TIMIT word
Annotations to be reused in the @mntext of morphologicd
analysis — thus creding overlapping yet separate
hierarchies. Moreover, since a sentencein TIMIT could be
defined as the set of its subadinate words, a sentence
Annotation could be aeaed by deriving its Region (and

Content) from the union of the Regions referenced by its
subordinate word Annotations.

7. META-ANNOTATION
INFRASTRUCTURE FOR ATLAS

7.1 Motivation

ATLAS defines a very generic data model that is designed
to be @le to model a wide range of annotation tasks.
Because of this genericity, ATLAS constructs are
minimally constrained. ATLAS provides enough
expressve power to represent extremely complex
annotations. However, this capability did not come, in the
first implementation, without a significant development
cost since the responsibility for such issues as gructural
integrity and consistency checking were pushed up to the
applicdion level. To unburden applicaion developers, a
means of constraining ATLAS constructs was therefore
needed so that ATLAS applicaions could interpret a
particular Annotation as a word, for example. The Meta-
Annotation concept was introduced to addressthese needs.

A Meta-Annotation is a pieceof meta-information about a
kind of linguistic annotation. In the aontext of ATLAS,
meta-annotations are ncretized in the form of the
ATLASType construct. The Meta-Annotation Infrastructure
for ATLAS (MAIA?, [9]) implements the Meta-Annotation
concept for ATLAS. It provides a scheme language that
allows type definitions to be dedared using a simple,
XML-based syntax. The ATLAS framework can then
dynamicdly interpret these type definitions. MAIA aso
provides srvices (such as the loading and saving of types)
that can be utili zed by ATLAS implementations.

7.2 ATLASTypes

A rudimentary placéolder existed in the first JATLAS
implementation for types. However, the implementation of
types and type-checking was left completely up to
application developers. We redized, however, when we
started working with the framework that this required a
considerable amount of work and resulted in a lot of code
duplication.

We dso explored the ideaof deferring semantic validation
to the XML layer. However, this provided only limited
validation. Worse, it necesstated that validation could only
occur on XML file read/writes and could not be used for
internal operations.

We redized that to be maximaly useful, ATLAS
applicaions need to be ale to automaticdly interpret type
information without requiring user intervention or
developer effort. Further, we redized that such information
more properly belonged at the arpus definition layer than
in the goplicaion layer. We dedded, therefore, to re-design
the framework to incorporate suppart for data typing. This

2Maiawas one of Atlas’ daughter in the Greek mythology.

was acomplished via the addtion of MAIA and
ATLASTypesto ATLAS.

An ATLASType is a piece of metadata ssociated with an
ATLAS construct to describe atributes of, and permitted
operations for a spedfic annotation element. This provides
the kind of data typing supparted in most objed-oriented
languages. ATLASTypes are thus very similar to clases in
objed-oriented parlance.

By definition, elements with the same ATLASType share
the same structure. ATLASTypes also enforce @nstraints on
relationships between ATLAS constructs. For example,
from our TIMIT example &ove, we want to require that
sentence annotations can contain only word annotations
and, word annotations, in turn, can contain only phone
annotations.

7.3 MAIA

MAIA provides a mechanism for the aedion and
management of ATLASTypes. Its type definition language
provides a formalism for the spedficaion of an annotation
corpus which can be used to validate operations during the
credion and modificaion of the rpus. It permits the
ATLAS framework (and ATLAS-based applications) to
perform validation to ensure that elements that are
supposed to be of a given type have the rred structure
and behave @& expeded. The MAIA type definition
language provides a mechanism to creade a self-
documenting, concise definition of a crpus usable by both
human designers/users and ATLAS-based todls.

Esentidly, MAIA adds a semantic layer on top o
ATLAS generic structures. This enables developers to
focus on higher-level issues, such as user-interadion,
without the burden of having to attend to low-level data
management.

We see MAIA as amgjor step towards the development of
more generic tools that can be tail ored to spedfic needs at
the data level, rather than at the applicaion level. For
example, a generic annotation editor could be aeaed
which dynamicdly builds gedfic interfaces based on the
MAIA definition of the datait isto work with.

MAIA is clealy a work in progress and we arealy have
several ideas about how it can be made more powerful and
expressve. Currently, it supports only basic data type and
pasition constraints. However, it would be more useful if it
supparted relationship- and content-dependent constraints.
For example, in TIMIT, the time for the first word of a
sentence should align with the sentence boundary and we
should be ale to define what constitutes a legal word. In
particular, MAIA will eventualy suppat more daborate
typing for value and range mnstraints and more accrate
description of inter-annotation dependencies. Our ultimate
goal is to make MAIA so comprehensive that application
developers will have to write no corpus-spedfic ocode.
MAIA will be detail ed in aforthcoming paper.

8. CONCLUSION

Since it was first introduced at LREC 200Q the ATLAS
framework has evolved to incorporate numerous
enhancements including suppat for hierarchicd
relationships, multi-dimensional signal types, and data
typing viaMAIA.

The Java instantiation of ATLAS (JATLAS [8]) has been
updated with these enhancements and is now currently in
Beta version, available for download, along with more
information on the achitedure, on the ATLAS web site
[6].

Although, ATLAS has matured into a powerful and very
usable anotation framework, we ae still working to
improve it. In particular, we are investigating extending the
current framework into a full-fledged annotation server that
would allow multiple users to concurrently work on the
same annotations in a fully distributed annotation
environment. We ae also working to make MAIA more
expressve by tying it to a query language we intend to
develop for ATLAS — thus providing a complete annotation
data development/reseach environment. Work is aso in
progresson defining a widget library for visualizaion and
editing of ATLAS elements to further improve the eae of
application development.

At this time, we would like to invite people interested in
using ATLAS to send us descriptions of their annotation
corpora. - We will work with them to develop MAIA
definitions for their data and build a sample ATLAS
version of their corpus. This will aso provide us with a
diversity of data so that we can further improve the
framework.

[1]

(2]

(9]

REFERENCES

Bird, S. and Liberman, M., 1999 A formal framework
for linguistic annotation. Technicd report MS-CIS-99-
01, Department of Computer and Information Science,
University of Pennsylvania. Revised version appeaed
in Speety Communications 33 (1,2), pp 23-60.

Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun
C. and Liberman, M., 2000 ATLAS: A flexible and
extensible achitedure for linguistic annotation in
Proceedings of LREC 2000 (Athens, Greece May
2000), pp 1699-1706.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett,
D., Dahigren, N., NIST, 1986. The DARPA TIMIT
aooustic-phonetic continuous geed corpus CDROM.
[http://www.ldc.upenn.edw/lol/docs/ TIMIT.html]

LDC, 1999 Annotation Graphs.
[http://www.ldc.upenn.edu/AG/]

NIST, 1998. A Universal Transcription Format (UTF)
annotation spedfication for evaluation of spoken
language technology corpora
[http://www.nist.gov/speed/tests/bnr/hub4_98utf-1.0-
v2.ps|

NIST, 1999. Architedure and Toodls for Linguistic
Analysis Systems. [http://www.nist.gov/speedvatlas/]

NIST, 1999. ATLAS Interchange Format.
[http://www.nist.gov/speedV/atlas/devel op/aif.html]

NIST, 2000. JATLAS, a Java implementation of the
ATLAS framework.
[http://www.nist.gov/speed/atlas/jatlas/]

NIST, 2002, Meta-Annotation Infrastructure for
ATLAS.
[http://www.nist.gov/speed/atlas/devel op/maia.html]

