
Recent Improvements to the ATLAS Architecture

Christophe Laprun, Jonathan Fiscus,

John Garofolo, Sylvain Pajot
National Institute of Standards and Technology

100 Bureau Drive Mail Stop 8940
Gaithersburg, MD 20899-8940

(+1) 301 975 3191

{claprun, jfiscus, jgarofolo, pajot}@nist.gov

ABSTRACT
We examine the recent improvements that were made to
the ATLAS (Architecture and Tools for Linguistic Analysis
Systems) architecture. We first introduce the architecture
and the historical context for this work. Next, we describe
NIST’s initial implementation of the framework before
analyzing it. We then focus on three important
improvements (relating to multi-dimensional signals,
hierarchical structures and validation) we have made to the
architecture to make it more usable. We conclude by
summarizing the major points covered and discuss plans for
future work.

Keywords

ATLAS, MAIA, Linguistic infrastructure

1. INTRODUCTION
Annotated corpora are a central component of research in
human language technology. As corpora have proli ferated
across languages, disciplines, and technologies, the lack of
common exchange and storage formats has become a
critical problem. This profusion of formats has made
reusing annotated data or adapting existing tools for new
annotation tasks significantly more difficult.

The standardization of tag sets (an approach we tried with
our Universal Transcription Format [5]) is of moderate
usefulness since language research is by necessity an open-
ended task, subject to constant revision as the research
domains change and the theories evolve.

A solution to this "bazaar of tools and formats" [2] is to
interpose a generic annotation model via which annotation
data is manipulated. ATLAS (Architecture and Tools for
Linguistic Analysis Systems) makes use of such a generic
data model. We first examine the historical context that led
to the creation of the project. We then briefly describe the
first implementation of the architecture, singling out three
aspects of the architecture that needed to be improved:
handling of complex signals and hierarchical structures and
validation. Each of these aspects is then discussed in detail
in subsequent sections. We conclude by summing up the
major points we covered and suggest future work.

2. HISTORICAL CONTEXT
The ATLAS project started as a collaboration between the
LDC, MITRE and NIST in 1999 following Bird and
Liberman' s seminal work on Annotation Graphs (AGs) [1]
that demonstrated commonality across a diverse range of
annotation practices and defined a formalism based on
labeled, directed acyclic graphs.

The three parties recognized the urgent need for a
consistent way to represent and process annotation data.
NIST needed such a framework to accommodate constantly
evolving needs in linguistic evaluation. The LDC was
developing the AG formali sm in order to develop an
infrastructure that would help reduce the cost of linguistic
annotation while MITRE was interested in extending their
Alembic Workbench annotation tool to support new
domains.

NIST recognized the importance of the LDC’s work on
AGs and decided to form a working group to explore the
creation of a generic annotation framework and toolset that
would address three important issues for the linguistic
research community. First, ATLAS would promote
language corpora reuse and exchange. By providing a
generic annotation framework, ATLAS would make it
easier to share data since data annotated with a generic
representation could be reused in new contexts. Second,

reusable tools could be written in terms of the generic data
model thus easing tool development. Finally, given its
genericity, ATLAS would be able to gracefully
accommodate changing domains and annotation schemes.

As the result of this collaboration, ATLAS Level 0 (based
on AGs) and the basis for a generalized version (ATLAS
Level 1) were formally introduced at the second
international conference on Language Resources and
Evaluation (LREC 2000) in Athens, Greece and were the
subject of [2].

After LREC, the LDC moved on to implement an
architecture based on Annotation Graphs (also called AGs
or ATLAS level 0, [4]). NIST decided to pursue the
development of the generalized version of ATLAS
encompassing signals of arbitrary dimensions. A first
implementation of the generalized framework
(subsequently referred to as 'ATLAS') was made available
in April 2001. Based on feedback gathered on this first
implementation, a redesigned implementation was released,
in Beta form, at the end of January 2002 followed by
regular updates in the following months.

3. BASIC CONCEPTS
At the time of its introduction, only the premises for the
generic framework were defined. The LDC had developed
a prototype C++ implementation for ATLAS level 0. But,
the implementation of the generic model had just begun.
The remainder of this paper will address only NIST’s
implementation of the generalized version of ATLAS. We
will discuss later how some of these components have
evolved.

ATLAS provides an architecture targeted at facilit ating the
development of linguistic annotation applications1. When it
was first introduced, the architecture was comprised of
three main components that are still present in the newer
implementation:

1. a generic linguistic annotation ontology,
2. an Application Programming Interface (API),
3. the ATLAS Interchange Format (AIF, [7]).

The ontology at its core provides the constructs on which
the rest of the framework is built . The paradigm is simple
but is surprisingly powerful when it comes to expressing
complex annotation schemes. This provides a level of
indirection separating physical storage and application
logic that did not exist when most tools were written to
directly read and write data using a specific format. Tools
developed in terms of the ATLAS ontology can therefore
work with any data conforming to ATLAS’ paradigm,
which is summarized as follows:

1 Atlas was (in the Greek mythology) the Titan condemned to bear

heavens upon his shoulders. ATLAS is supposed to bear the
complexity of annotation management for the benefit of
linguistic applications!

An annotation is the fundamental act of
associating some content to a region in a
signal.

Paralleling this ontology, an ATLAS
���������	�
�	�����

references a
���������� in a ��� ������� and associates it with a ����
!	"#
!

 element. The preceding notation defines a
convention that we follow in this paper: ATLAS concepts
are formatted using $&%
'�(*),+�-.$0/�-�12(#$43�576 . 8�-�- +�$	/
$	'�+�- s are
organized in 8�-�/�5739(:'7(elements, which are themselves
contained in ;�<>=@?BA>C elements. ;�<>=D?EA>C also manages F
GIH�J <>K s and LNMPORQPS>T s. U�Q�VXW7Y�TIZ#M elements will be discussed
later. Figure 1, below, presents a pictorial view of the
conceptual model.

[]\ ^:_�`�a

b@c4dfefg,h b@c&die4gjh

kRlnm]o p:q

r&s4tXu vftXu wjxfy z {&| }f~
���:�I�n�X���f� �:�

�@�&�i�4�j�

�j�4��� �,�
�#�:�i���I�

�4������� �7� � �X��, ¢¡f£ ¤i¥ ¦ ¥

§4¨�¨�©�ª «7ª ¬ ©X¨�, ¢¡f£ ¤¢¥�¦ ¥­@®&¯f°f±j² ­@®&¯i°4±j²

Figure 1: ATLAS Conceptual Model

These constructs can be implemented using a variety of
programming languages. The ATLAS API defines ways to
manipulate these constructs while the ATLAS Interchange
Format provides a way to serialize ATLAS structures so
that they can be reused and exchanged.

4. INITIAL IMPLEMENTATION
NIST’s first implementation of the ATLAS architecture
was made available in April 2001. This first
implementation provided us with a starting point allowing
us to gather feedback and from which we could mature the
framework.

NIST’s implementation (called jATLAS) provides a Java
instantiation of these constructs in the form of objects that
can be used to quickly develop linguistic applications.

Each of these objects publishes operations via which its
data can be manipulated and behavior controlled. The
ensemble of these operations defines the ATLAS API.
Developers can thus access the components of the
framework via a well-established interface, permitting
alternate implementations to be developed without
impacting client applications.

jATLAS can serialize the object structures it manipulates
so that these structures can be easily shared and reused. The
first implementation provided a single modali ty for
serialization: the ATLAS Interchange Format. AIF is an
XML-based file format optimized for the serialization of
ATLAS structures. XML was chosen as the (then emergent
but now well established) standard data interchange format.

jATLAS’ f irst implementation provided NIST with a proof
of concept as well as a full-scale model for
experimentation. This implementation permitted us to
create some initial tools that gave us a deeper
understanding of the issues involved in the creation of a
generic annotation infrastructure. The development of the
framework was not, by its very nature, driven by a
particular application, making it rather complex to make
the right design choices and understanding their
consequences before actually putting the architecture to
use.

Both implementation and usage made us realize that the
framework exhibited limitations of two kinds: extrinsic and
intrinsic. Extrinsic limitations are problems that appear as
part of the development process. Intrinsic limitations are
problems that derive from the data model itself.

4.1 Extrinsic limitations
Extrinsic limitations revealed themselves as our
development work progressed. Even though we realized at
the time that some problems existed, we wanted to push
ahead to explore the issues more deeply and create an
architecture with which we could experiment.

The first limitation that we identified was related to
compatibility with Annotation Graphs. ATLAS started as a
conceptual framework based on the Annotation Graph
formalism. Consequently, ATLAS’ f irst instantiation was
still very much influenced by the Annotation Graph
formalism. Lots of effort had been made, during our
collaboration with the LDC and MITRE, to ensure that the
data model would be as isomorphic to AGs as possible. In
particular, the expressiveness of the data model was
restricted in order to respect the constraints imposed by the
AG formalism. But, over time, it became clear to NIST that
in order to fully generalize the data model, some of these
constraints needed to be relaxed. In particular, we decided
that strict conformance to the AG model was not required
provided that ATLAS could express everything that could
be expressed with AGs without loss of information.

The second extrinsic limit that we identified was that the
data model was too strongly tied to the serialization format.
The reason for this was that our early design work focused
on the exchange format rather than the data model. The
work on AIF was, in effect, driving the development of the
data model, because, even though this was not a conscious
effort, the AIF DTD was more or less used as the ATLAS
data model. This restricted the expressive power of the
framework to XML’s.

These issues led us to re-examine the data model from a
fresh perspective. We re-designed it starting with the core
ontology and only adding new constructs as deemed
necessary. The serialization format became then an
outgrowth of the stabili zed data model.

4.2 Intrinsic limitations
Extrinsic limitations aside, several l imitations also existed
with the data model itself. These were, however, more
diff icult to identify and appeared only after we put the
architecture to work in building applications.

The first limitation that we will examine was the need to
develop the support of complex signal types.

The next limitation, we will then turn our attention to, was
the creation of hierarchical annotation structures. Although
ATLAS’ first data model allowed the creation of
hierarchical annotations, it was not as intuitive as it could
have been.

The last limitation was the management of semantic
information. We initially considered deferring semantic
validation to the XML layer. However, this proved to be
insufficient and we decided to introduce a meta-annotation
concept, implemented in ATLAS by the Meta-Annotation
Infrastructure for ATLAS (MAIA), to efficiently address
semantic issues.

We discuss each of these points in turn in the next sections
and present the solutions that were implemented in the
redesign version of ATLAS.

5. MULTI-DIMENSIONAL SIGNALS
Traditionally, linguistic resources have focused on a linear
class of signals (e.g., text or audio) that can be indexed via
a simple offset into a file. However, as technical
capabiliti es and processing power have increased, so has
interest in multi-modality and signals that cannot be
reduced to a single dimension.

From the beginning, NIST and the ATLAS Working Group
recognized the need for a framework that would be able to
evolve gracefully as research interests moved toward more
complex, multi-modal signal types. Initiall y, we believed
that the AG formalism could be employed for all signal
types. However, as we began working with AGs, it became
apparent that although they were well-suited to linear
signals, they did not scale well for more complex signal
types. The basic premise of multi-dimensional signal
handling was included in the first ATLAS implementation.
However, many details were yet to be worked out

5.1 Signals and SignalGroups
Annotation sources are represented in ATLAS by the ³�´ µ�¶�·�¸

 construct. An ATLAS
³�´ µ�¶�·�¸

 is an immutable, N-
dimensional space containing phenomena that are the target
of ¹ ¶�¶PºP»&·.»&´�º>¶ s. Even though typical

³�´ µ�¶�·�¸
s can be

equated to physical signal files (speech waveforms,
newswire text, video or other more complex data with

higher dimensionality), it is not a necessity. In ATLAS, a ¼�½ ¾�¿�À
Á
 is an entity that identifies a logical (as opposed to a

physical file) target for Â ¿�¿�Ã�Ä	À
Ä	½�Ã�¿ s and can thus refer, for
example, only to the left track of a stereo recording.
ATLAS also does not prescribe to any single format or
dimensionality for physical signals, but there must be a way
to define an unambiguous coordinate system for the

¼�½ ¾�¿�À�Á
.

Furthermore, groups of related
¼�½ ¾�¿�À�Á

s can be formed to
create targets for Â ¿�¿PÃPÄ	À
Ä	½�Ã�¿ s spanning several logical
signals. The Å�Æ Ç�È�É�Ê¢ËEÌnÍ�Î#Ï construct is used to model this
grouping. Å�Æ Ç�È�É�ÊXËBÌnÍ�Î#Ï s constitute new logical signals
themselves and are treated as such by the framework.
However, some constraints need to be imposed to make
them manageable. In particular, since ATLAS Å�Æ Ç�È�É�Ê s need
to be immutable, once a ÅPÆ Ç�È�É�Ê¢ËEÌIÍPÎ#Ï is created and
referenced, it cannot be changed. Moreover, in order to
ensure consistency, only ÅPÆ Ç�È�É�Ê s that share common
dimensions can be grouped together. An obvious use of
Å�Æ Ç�È�É
Ê�ËEÌ�Í�ÎRÏ is the alignment of different signals along a
given time line. An example of an index into a stereo audio
signal is a simple example.

5.2 Regions and Anchors
Once Å�Æ ÇÐÈ�É�Ê s have been identified, linguistic phenomena of
interest are identified via Ñ�Ò:Ç�Æ7Í>È constructs. A Ñ
ÒIÇ�Æ�Í�È is an
abstraction for identifying an area of the Å�Æ Ç�È�É�Ê space.
Ñ
ÒIÇ�Æ7Í�È s are delimited by a set of coordinates that mark
specific areas of interest. These markers are modeled by the Ó ÈPÔ]Õ�Í>Ì construct, thus named because they are used to
“anchor” annotations to Å�Æ ÇÐÈ�É�Ê s.
Ó ÈPÔ]Õ�Í>Ì s are the only ties that annotations have to the
physical structure of the signal and the only ATLAS
concept that is signal-specific. Ñ�ÒIÇ�Æ�Í>È s use as many Ó ÈPÔ]Õ�Í>Ì s as needed to index into Å�Æ Ç�È�É�Ê s. Thus, the Ñ�Ò�Ç�Æ�Í>È
construct encapsulates the specificity of the underlying
signal. This is a particularly important aspect of ATLAS
since it allows the framework to evolve and scale
gracefully, when confronted with new classes of signals,
without requiring change to the basic ontology. It is also
worth noting that Ñ�ÒIÇ�Æ�Í�È s can reference other Ñ
Ò�Ç�Æ7Í�È s as
well .

Suppose, for example, that a given television signal has
been modeled in ATLAS using three Å�Æ Ç�È�É�Ê s: one for each
of the two audio tracks and one for the video signal. One
might want to annotate a phenomenon occurring only on
the audio part of the television signal. If the phenomenon of
interest spans both audio channels, one could create a
Å�Æ Ç�È�É
Ê�ËEÌ�Í�ÎRÏ grouping them together. Since the video
frames can be projected along the time dimension, a
grouping of the three Å�Æ ÇÐÈ�É�Ê s can be made to annotate time-
based phenomena for the entire television signal. However,
if the annotation task is to track hand movements, the
Ñ
ÒIÇ�Æ7Í�È s of interest could be defined using both a temporal Ó ÈPÔ]Õ�Í>Ì to mark the frames of interest and another Ñ�ÒIÇ�Æ7Í�È
to define the area of interest within each video frame. The

complete Ñ�ÒIÇÐÆ7Í>È of interest would then be the composition
of the temporal

Ó È�Ô]Õ�Í>Ì s and 2D Ñ�ÒIÇ�Æ7Í�È s. Figure 2, below,
presents a graphical view of this example.

Ö ×�Ø Ù	Ú�ÛXÜiÝ¢Ý�×fÞ

ßià9áiâ¢ãiä åfæXçßià9áiâ¢ãiä åfæXç

á4ä ãiè�é,ê7è�ëiæiæ�âfì

í î7ï ð¢ñ òXóiôXñ ðXõfö ÷iî

øfù úfûXüiý þ�ÿ �����

Figure 2: Video Annotation Example

6. HIERARCHICAL STRUCTURES
Support for the representation of inter-annotation relations
(in particular, annotation hierarchies) was somewhat
limited in the first jATLAS’ implementation that
constrained such relationships to be represented as part of
an

�����	��

��

�����
’s � ����

����
 in a way that was neither

intuitive nor explicit.

As a result of the experience we gained with this
implementation, we introduced the ��� ����������� construct to
model relations between

��������

��

��� �
s. ��� ����������� constructs

maintain a list of references to
��������

��

�����

s that are
descendants of a parent

� �����	
!�"
!�����
. Since references

(rather than actual annotations) are used, it is possible to
build overlapping hierarchies. Reuse is therefore improved
since already created

��������

��

�����
s can be reused in new

contexts.

Parent
�����	��

��

���#�

s can also use their ��� ����������� elements to
derive their � ����

����
 and/or $ ��%&����� . It is therefore possible
to dynamically update � ���"
!�'��
 and/or $ ��%������ information
of a parent based on changes to its set of ��� �(��������� , thus
avoiding redundancy and simplifying annotation
management.

The TIMIT Acoustic Phonetic Corpus ([3]) provides a
simple example of parent/child annotation relationships. In
TIMIT, words are composed of a set of phones. This
relationship is modeled quite simply in ATLAS by creating
a ��� �(�(������� element of a word

��������

��

���#�
that contains a

list of references to the phone
�����	��

��

�����

s for that word.
Further, this makes it possible for TIMIT word �����	��

��

� ���

s to be reused in the context of morphological
analysis – thus creating overlapping yet separate
hierarchies. Moreover, since a sentence in TIMIT could be
defined as the set of its subordinate words, a sentence �����	��

��

�����

 could be created by deriving its $ �)%&���#� (and

*�+�,�-
.�,�-
) from the union of the / .�0�1�+�, s referenced by its

subordinate word 2 ,�,�+�-
3�-
1�+�, s.
7. META-ANNOTATION
INFRASTRUCTURE FOR ATLAS

7.1 Motivation
ATLAS defines a very generic data model that is designed
to be able to model a wide range of annotation tasks.
Because of this genericity, ATLAS’ constructs are
minimally constrained. ATLAS provides enough
expressive power to represent extremely complex
annotations. However, this capabili ty did not come, in the
first implementation, without a significant development
cost since the responsibili ty for such issues as structural
integrity and consistency checking were pushed up to the
application level. To unburden application developers, a
means of constraining ATLAS constructs was therefore
needed so that ATLAS applications could interpret a
particular 2 ,�,	+	-
3�-
1�+#, as a word, for example. The Meta-
Annotation concept was introduced to address these needs.

A Meta-Annotation is a piece of meta-information about a
kind of linguistic annotation. In the context of ATLAS,
meta-annotations are concretized in the form of the 465'7�498&5;:=<�>

 construct. The Meta-Annotation Infrastructure
for ATLAS (MAIA2, [9]) implements the Meta-Annotation
concept for ATLAS. It provides a scheme language that
allows type definitions to be declared using a simple,
XML-based syntax. The ATLAS framework can then
dynamically interpret these type definitions. MAIA also
provides services (such as the loading and saving of types)
that can be utili zed by ATLAS implementations.

7.2 ATLASTypes
A rudimentary placeholder existed in the first jATLAS
implementation for types. However, the implementation of
types and type-checking was left completely up to
application developers. We realized, however, when we
started working with the framework that this required a
considerable amount of work and resulted in a lot of code
duplication.

We also explored the idea of deferring semantic validation
to the XML layer. However, this provided only limited
validation. Worse, it necessitated that validation could only
occur on XML file read/writes and could not be used for
internal operations.

We realized that to be maximally useful, ATLAS
applications need to be able to automatically interpret type
information without requiring user intervention or
developer effort. Further, we realized that such information
more properly belonged at the corpus definition layer than
in the application layer. We decided, therefore, to re-design
the framework to incorporate support for data typing. This

2 Maia was one of Atlas’ daughter in the Greek mythology.

was accomplished via the addition of MAIA and 4?5�7�498&5;:=<&>
s to ATLAS.

An
465'7�4@8"5':=<&>

 is a piece of metadata associated with an
ATLAS construct to describe attributes of, and permitted
operations for a specific annotation element. This provides
the kind of data typing supported in most object-oriented
languages.

465'7A4B8�5;:�<&>
s are thus very similar to classes in

object-oriented parlance.

By definition, elements with the same
465'7A4B8�5;:�<&>

 share
the same structure.

465�7A4@8�5':=<&>
s also enforce constraints on

relationships between ATLAS constructs. For example,
from our TIMIT example above, we want to require that
sentence annotations can contain only word annotations
and, word annotations, in turn, can contain only phone
annotations.

7.3 MAIA
MAIA provides a mechanism for the creation and
management of

4C5'7A498&5;:=<&>
s. Its type definition language

provides a formalism for the specification of an annotation
corpus which can be used to validate operations during the
creation and modification of the corpus. It permits the
ATLAS framework (and ATLAS-based applications) to
perform validation to ensure that elements that are
supposed to be of a given type have the correct structure
and behave as expected. The MAIA type definition
language provides a mechanism to create a self-
documenting, concise definition of a corpus usable by both
human designers/users and ATLAS-based tools.

Essentially, MAIA adds a semantic layer on top of
ATLAS’ generic structures. This enables developers to
focus on higher-level issues, such as user-interaction,
without the burden of having to attend to low-level data
management.

We see MAIA as a major step towards the development of
more generic tools that can be tailored to specific needs at
the data level, rather than at the application level. For
example, a generic annotation editor could be created
which dynamically builds specific interfaces based on the
MAIA definition of the data it is to work with.

MAIA is clearly a work in progress and we already have
several ideas about how it can be made more powerful and
expressive. Currently, it supports only basic data type and
position constraints. However, it would be more useful if it
supported relationship- and content-dependent constraints.
For example, in TIMIT, the time for the first word of a
sentence should align with the sentence boundary and we
should be able to define what constitutes a legal word. In
particular, MAIA wil l eventually support more elaborate
typing for value and range constraints and more accurate
description of inter-annotation dependencies. Our ultimate
goal is to make MAIA so comprehensive that application
developers wil l have to write no corpus-specific code.
MAIA will be detailed in a forthcoming paper.

8. CONCLUSION
Since it was first introduced at LREC 2000, the ATLAS
framework has evolved to incorporate numerous
enhancements including support for hierarchical
relationships, multi-dimensional signal types, and data
typing via MAIA.

The Java instantiation of ATLAS (jATLAS [8]) has been
updated with these enhancements and is now currently in
Beta version, available for download, along with more
information on the architecture, on the ATLAS web site
[6].

Although, ATLAS has matured into a powerful and very
usable annotation framework, we are still working to
improve it. In particular, we are investigating extending the
current framework into a full-fledged annotation server that
would allow multiple users to concurrently work on the
same annotations in a fully distributed annotation
environment. We are also working to make MAIA more
expressive by tying it to a query language we intend to
develop for ATLAS – thus providing a complete annotation
data development/research environment. Work is also in
progress on defining a widget library for visualization and
editing of ATLAS elements to further improve the ease of
application development.

At this time, we would like to invite people interested in
using ATLAS to send us descriptions of their annotation
corpora. We wil l work with them to develop MAIA
definitions for their data and build a sample ATLAS
version of their corpus. This will also provide us with a
diversity of data so that we can further improve the
framework.

9. REFERENCES
[1] Bird, S. and Liberman, M., 1999. A formal framework

for linguistic annotation. Technical report MS-CIS-99-
01, Department of Computer and Information Science,
University of Pennsylvania. Revised version appeared
in Speech Communications 33 (1,2), pp 23-60.

[2] Bird, S., Day, D., Garofolo, J., Henderson, J., Laprun
C. and Liberman, M., 2000. ATLAS: A flexible and
extensible architecture for linguistic annotation in
Proceedings of LREC 2000 (Athens, Greece, May
2000), pp 1699-1706.

[3] Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett,
D., Dahlgren, N., NIST, 1986. The DARPA TIMIT
acoustic-phonetic continuous speech corpus CDROM.
[http://www.ldc.upenn.edu/lol/docs/TIMIT.html]

[4] LDC, 1999. Annotation Graphs.
[http://www.ldc.upenn.edu/AG/]

[5] NIST, 1998. A Universal Transcription Format (UTF)
annotation specification for evaluation of spoken
language technology corpora.
[http://www.nist.gov/speech/tests/bnr/hub4_98/utf-1.0-
v2.ps]

[6] NIST, 1999. Architecture and Tools for Linguistic
Analysis Systems. [http://www.nist.gov/speech/atlas/]

[7] NIST, 1999. ATLAS Interchange Format.
[http://www.nist.gov/speech/atlas/develop/aif.html]

[8] NIST, 2000. jATLAS, a Java implementation of the
ATLAS framework.
[http://www.nist.gov/speech/atlas/jatlas/]

[9] NIST, 2002. Meta-Annotation Infrastructure for
ATLAS.
[http://www.nist.gov/speech/atlas/develop/maia.html]

